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Effect of Fibroblast Growth Factors 1, 2, 4, 5,6, 7, 8, 9,
and 10 on Avian Chondrocyte Proliferation
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Abstract It has been demonstrated that fibroblast growth factor receptors are key regulators of endochondral bone
growth. However, it has not been determined what fibroblast growth factor ligand(s) (FGFs) are important in this process.
This study sought to determine whether FGFs 1, 2,4, 5, 6, 7, 8,9, and 10 were capable of stimulating avian chondrocyte
proliferation in vitro. We have found that FGFs 2, 4, and 9 strongly stimulate avian chondrocyte proliferation while FGFs
6 and 8 stimulate proliferation to a lesser extent. RT-PCR indicates that FGF-2 and FGF-4 are expressed in the postnatal
avian epiphyseal growth plate (EGP) while FGF-8 and FGF-9 are not. Thus, FGF-2 and FGF-4 stimulate chondrocyte
proliferation and are both present in the EGP. This suggests that FGF-2 and FGF-4 may be important ligands, in vivo, for
the regulation of endochondral bone growth. These observations coupled with our observation that multiple avian FGF
receptors (Cek1, Cek2, Cek3, and FREK) are expressed in proliferative chondrocytes highlights the complexity of FGF

signaling pathways in postnatal endochondral bone growth. J. Cell. Biochem. 84: 359-366, 2002.  © 2001 Wiley-Liss, Inc.
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Fibroblast growth factor signaling pathways
are essential for normal endochondral bone
growth. Thanatophoric dysplasia (TD), a lethal
skeletal disorder, achondroplasia (ACH), the
most common form of human dwarfism, and
hypochondroplasia, a less severe form of dwarf-
ism are all caused by different mutations in
fibroblast growth factor receptor 3 (FGFR3)
[Rousseau et al., 1994; Shiang et al., 1994,
Prinos et al.,, 1995; Rousseau et al., 1995;
Tavormina et al., 1995]. The mutations asso-
ciated with ACH and TD cause constitutive
activation of the FGFR3 receptor [Naski et al.,
1996].

Studies using transgenic mice have shown
that overexpression of FGF-2 or FGF-9 causes
inhibition of chondrocyte hypertrophy and
subsequent endochondral bone growth, while
knockout of the FGFR3 gene causes an enlarge-
ment of the hypertrophic zone and enhanced
endochondral bone growth [Coffin et al., 1995;
Colvin et al., 1996; Deng et al., 1996; Garofalo
et al., 1999]. In addition, a number of in vitro
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studies have demonstrated that FGF-2 is cap-
able of inhibiting chondrocyte differentiation
[Kato and Iwamoto, 1990; Suzuki, 1992; Trippel
et al., 1993]. Thus, one role for the FGF signal-
ing pathway in the epiphyseal growth plate
(EGP) is the inhibition of hypertrophy.

FGFs affect chondrocyte proliferation as well
as differentiation but the nature of that effect is
in dispute. Knockout of FGFR3 results in in-
creased chondrocyte proliferation [Deng et al.,
1996], while the constitutive activating muta-
tion of FGFR3 that causes ACH leads to an
inhibition of chondrocyte proliferation in
transgenic mice [Segev et al., 2000]. FGF-9
over-expression also inhibits chondrocyte pro-
liferation [Garofalo et al., 1999]. However, these
studies are in conflict with the observations that
over-expression of FGF-2 results in an expan-
sion of the proliferative zone of the growth plate
and a neonatal lethal mutation that causes
constitutive activation of FGFR3 enhances
chondrocyte proliferation in transgenic mice
[Coffin et al., 1995; Iwata et al., 2000].

Our laboratory has demonstrated that FGF-2
is a potent permissive mitogen which greatly
enhances avian chondrocyte proliferation in a
serum-free culture system [Rosselot et al., 1994;
Luan et al., 1996]. Other laboratories have
made similar observations on the in vitro effects
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of FGF-2 on the proliferation of chicken, as well
as rat, rabbit, and bovine growth plate chon-
drocytes [Hirakiet al., 1988; Trippel et al., 1993;
O’Keefe et al., 1994; Wroblewski and Edwall-
Arvidsson, 1995]. More recently, Weksler et al.
[1999] have shown that a rat chondrogenic
cell line responds to FGF-9 as well as FGF-2.
In contrast, Sahni et al. [1999] have observed
that the proliferation of primary murine chon-
drocytes is inhibited by FGF-1. Finally, Nagai
et al. [1995] have demonstrated that adminis-
tration of low doses of FGF-2 to rats enhances
bone formation while higher doses inhibit
bone growth. All these studies demonstrate
some effect of FGFs or FGFRs on chondrocyte
proliferation, whether that effect is inhibitory
or stimulatory seems to vary with the system
under study.

It is clear that FGF signaling plays an im-
portant role in the regulation of endochondral
bone growth and that FGFR3 is a key receptor in
this pathway. However, it has not been deter-
mined what FGF is the important ligand that
regulates endochondral bone growth. The FGF
family of ligands has at least 21 members, and
many of these have been studied utilizing
knockout mice [reviewed by Zhou et al., 1998;
Xu et al., 1999; Montero et al., 2000; Moon et al.,
2000; Sun et al., 2000]. Studies of single knock-
outsof FGFs 1, 2, 3,4, 5,6, 7, 8,9, and 10 have
not revealed which FGF ligand is essential for
postnatal endochondral bone growth. The
ligand important in regulating endochondral
bone formation could be any one of the remain-
ing unstudied members of the FGF family or
another member of the FGF family could com-
pensate for the knockout of a single FGF. This
question has begun to be addressed by the
experiments of Miller et al. [2000] who have
shown that both single and double knockouts of
FGF-1 and FGF-2 have no effect on endochon-
dral bone growth.

We have taken a pragmatic approach in
attempting to elucidate the FGFs’ importance
in endochondral bone growth. We have exam-
ined the effects of FGFs 1, 2,4, 5,6, 7, 8,9, and
10 on the proliferation of cultured chondrocytes.
These studies in conjunction with the use of RT-
PCR show that FGF's 2 and 4 strongly stimulate
proliferation and are present in the growth
plate and thus may be important to endochon-
dral bone growth in vivo. In addition, our obser-
vations that four different avian FGF receptors
(Cekl, Cek2, Cek3, FREK) are expressed by

proliferative chondrocytes demonstrates the
complexity of the FGF signaling pathway in
the growth plate.

MATERIALS AND METHODS
Chondrocyte Isolation

Articular cartilage chondrocytes as well as
proliferative and hypertrophic zone growth
plate chondrocytes were isolated from the
proximal end of the tibiotarsi as previously
described [Rosselot et al., 1992; Rousche et al.,
2001]. Male Avian x Avian chicks (Longneck-
er’s Hatchery, Elizabethtown, PA) were raised
on commercial broiler feed at The Pennsylvania
State University Poultry Education and Re-
search Center. At 4 weeks of age, the chicks
were sacrificed by cervical dislocation and their
tibiotarsi removed using a protocol approved by
TACUC (# 99R024-0). Under aseptic conditions,
the outer surface of the proximal articular
cartilage was removed and discarded. Thin
slices of inner articular cartilage tissue were
collected and minced in Ham’s F12 nutrient
media (F12). The remaining articular cartilage
was then discarded and the exposed growth
plate was scraped gently with a scalpel blade to
collect the proliferative cell layer. The transi-
tional or pre-hypertrophic zone was then dis-
carded and thin slices of the hypertrophic cell
layer were collected and minced in F12. Articu-
lar cartilage, proliferative, and hypertrophic
tissues were incubated separately at 37°C
for 15 min in F12 containing 0.083% trypsin
(Worthington Biochemical Corp., Freehold, NdJ)
and 0.017% hyaluronidase (Sigma, St. Louis,
MO). Following two rinses with F12, prolifera-
tive and hypertrophic tissues were incubated
separately in F12 containing 0.10% type 1A
collagenase (Sigma) for 3 h at 37°C. Articular
cartilage tissue was also rinsed twice with F12
and then incubated in F12 containing 0.15%
type 1A collagenase for 4.5 h at 37°C. All
digested tissues were passed through a 149 um
nylon mesh, rinsed twice with F12, and then
resuspended in F12.

Proliferation Assay

Proliferative zone chondrocytes were plated
in 96-well, tissue culture treated plates at a
density of 2.2 x 10° cells per cm?. The plating
media was modified Webbers media containing
5% newborn calf serum (Sigma) [Rosselot et al.,
1992]. After approximately 18 h of culture at
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37°C, the media was discarded and the cells
were rinsed briefly using Dulbecco’s PBS with
0.001% calcium chloride. Cells were then incu-
bated in a growth factor mixture consisting of
25 ng/ml recombinant human insulin-like
growth factor-1 (IGF-1) (Bachem, King of
Prussia, PA), 1 ng/ml porcine transforming
growth factor-f (TGF-B) (R&D Systems, Min-
neapolis, MN) and varying concentrations of
one of the FGFs listed below. FGF-1, FGF-2,
FGF-9, and FGF-10 are recombinant human
growth factors that were obtained from R&D
Systems. Recombinant human FGF-4, FGF-5,
FGF-6, and FGF-7 as well as recombinant
mouse FGF-8b were purchased from Sigma.
Forty-eight hours after the cells were initially
plated, the growth factor mixture was supple-
mented with 1 pCi per well of methyl->H-
thymidine (ICN, Irvine, CA). Approximately
65 h after the cells were initially plated they
were detached using 0.4 mg per well of protease
in 0.15 M Tris-HC1 and 0.1 M EDTA (pH 8.0)
and transferred onto filter disks (Skatron
Instruments, Sterling, VA). The disks were
then immersed in liquid scintillation fluid and
counted.

RT-PCR

Total RNA was isolated from 4-day-old
chicken embryos and from total growth plate
tissue taken from the proximal tibiotarsi of 4-
week-old chickens using TRIzol reagent (Life
Technologies Inc., Rockville, MD) according to
the manufacturer’s directions.

Contaminating DNA was removed from iso-
lated total RNA using DNA-free according to the
manufacturer’s instructions (Ambion, Austin,
TX). Total RNA was reverse transcribed with
random-priming using standard conditions
(Promega, Madison, WI).

The PCR primers used are listed in Table I.
The primer sequences of FGF-2, FGF-4, and
FGF-8 are based on the published chicken
sequences and have been used previously to
amplify these sequences from chicken cDNA
[Luan et al., 1996; Mitchell et al., 1999]. The
primers for FGF-9 were based on conserved
sequences found in the published sequences of
the human, mouse, rat, and Xenopus FGF-9
genes [Miyamoto et al., 1993; Santos-Ocampo
et al., 1996; Song and Slack, 1996]. The PCR
reaction mixtures contained: 200 ng of reverse
transcribed RNA, 0.4 uM of each primer, 10 mM
Tris-HCI (pH 9.0), 50 mM KCl, 1.65 mM MgCls,,

TABLE 1. Primers, Product Size, and
Diagnostic Restriction Enzymes Used in the
PCR Analysis of FGF Expression

Product size/

Forward/reverse  diagnostic restriction
primers enyme

FGF-2 acggegteegegagaaga 279bp
gteecaggtecagtttttg Taq I

FGF-4 gtetetattgeaacgtgg 276 bp
tccegggataaatectgg BamH I

FGF-8 agcacgtgcagatettgg 335 bp
aagtgcacctcgegttgg Pst1

FGF-9 tgggagcetattteggtgtge 529 bp
tttetggtgeegtttagtee Directly sequenced

0.1% Triton X-100, 200 uM each of dATP, dCTP,
dGTP, dTTP (Life Technologies), and 2.5 U of
Taq polymerase (Promega). Samples were sub-
jected to 35 cycles at 95°C for 1 min, 55°C for
2 min, and 72°C for 1 min in a Stratagene
robocycler gradient 40 (Stratagene, La Jolla,
CA). Following amplification PCR products
were electrophoresed in a 1.7% agarose gel
along with a 100 base pair DNA ladder (Life
Technologies). The identities of the PCR pro-
ducts were confirmed by their size as well as by
their digestion with a diagnostic restriction
enzyme (Table I). The identity of FGF-9 was
confirmed by direct sequencing of the product
[unpublished data].

Northern Analysis of FGF Receptor Expression

Articular, proliferative, and hypertrophic
chondrocytes were obtained as described above.
Chondrocytes (1 x 107 cells of each type) were
lysed in 1 ml of TRIzol reagent and RNA was
isolated according to the manufacturer’s instru-
ctions. Twenty micrograms of total RNA from
each chondrocyte type was electrophoresed,
blotted, and probed according to standard
protocols [Ausubel et al., 1989]. The cDNAs of
chicken FGF receptors Cekl (homologous to
mammalian FGFR1), Cek2 (homologous to
mammalian FGFR3), and Cek3 (homologous
to mammalian FGFR2) were used as probes
and were kindly provided by Dr. Elena
Pasquale (The Burnham Institute, La Jolla,
CA) [Pasquale and Singer, 1989; Pasquale,
1990]. The quail FGF receptor FREK (homo-
logous to Z-FGFR4 from the zebrafish [Thisse
et al., 1995] and to PFR4 from the amphibian
Pleurodeles; and similar to FGFR4 from mam-
mals) cDNA was also used as a probe and was
kindly provided by Dr. Christophe Marcelle
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(Division of Biology, Beckman Institute, Pasa-
dena, CA) [Marcelle et al., 1994].

RESULTS

The effect of various concentrations of FGFs
1,2,4,5,6,7,8,9, and 10 on avian chondrocyte
proliferation was tested in vitro, in the presence
of IGF-1 and TGF-f but in the absence of serum
(Fig. 1). Chondrocyte proliferation was strongly
stimulated by FGF-2, FGF-4, and FGF-9.

At 0.61 nM FGF-2, FGF-4, or FGF-9 thereis a
very significant (P < 0.01) stimulation of chon-
drocyte proliferation (Fig. 2). At this concentra-
tion, there was a much smaller, yet statistically
significant (P < 0.05), stimulation of chondro-
cyte proliferation by FGF-6 and FGF-8. Even at
levels as high as 6.1 nM, there was no enhance-
ment of proliferation by FGF-5, FGF-7, or FGF-
10 (data not shown). However, FGF-1 does
stimulate proliferation at this concentration,
albeit to a level not equal to that of 0.061 nM
FGF-2, FGF-4, or FGF-9 (data not shown).

RT-PCR of RNA isolated from avian growth
plates demonstrates that FGF-2 and FGF-4
were present while FGF-8 and FGF-9 could not
be detected (Fig. 3). All four FGF's could be easily
detected in RNA isolated from 4-day-old chicken
embryos.

Northern blot hybridization was performed to
determine what avian FGF receptors were
expressed in articular, proliferative, and hyper-
trophic chondrocytes (Fig. 4). In proliferative
chondrocytes, Cek2 and FREK were easily
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Fig. 1. The effects of FGFs 1, 2, 4, 5,6, 7, 8,9, and 10 on
chondrocyte proliferation. Proliferative zone chondrocytes
were treated with various doses of FGF 1, 2, 4, 5, 6, 7, 8, 9,
or 10 in serum-free media containing 25 ng/ml IGF-1 and 1 ng/
ml TGF-B. *H-thymidine incorporation was measured to
determine cell proliferation.
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Fig. 2. The effect of 0.61 nMFGF 1,2, 4,5,6,7,8,9,and 10
on chondrocyte proliferation. Proliferative zone chondrocytes
were incubated with 0.61 nMFGF 1, 2,4,5,6,7,8,9,0r 10 in
serum-free media containing 25 ng/ml IGF-1 and 1 ng/ml TGF-
. Control chondrocytes were incubated in serum-free media
containing 25 ng/ml IGF-1 and 1 ng/ml TGF-B alone (IT). *H-
thymidine incorporation was measured to determine cell
proliferation. *Indicates treatment is significantly different than
control (P < 0.05).**Indicates treatment is significantly different
than control (P<0.01).

detected while Cekl and Cek3 were weakly
expressed. The levels of Cek1, Cek2, and FREK
all declined in hypertrophic chondrocytes while
Cek3 expression was increased in comparison to
proliferative chondrocytes.

DISCUSSION

Previous studies from our laboratory indi-
cated that FGF-2 is a powerful permissive
stimulator of avian epiphyseal chondrocyte
proliferation [Rosselot et al., 1994; Luan et al.,
1996]. This work supports those observations
and adds FGF-4 and FGF-9 to the list of FGF's
that are capable of strongly stimulating chon-
drocyte proliferation in vitro. FGF's 6 and 8 are
also mitogenic but are less active on a molar
basis. FGFs 5, 7, and 10 show no significant
stimulation of proliferation at any level. Our
observations of the positive effect that some
FGFs have on chondrocyte proliferation in vitro
are supported by a number of other studies that
have demonstrated the stimulatory effects of
FGF-2 [Hiraki et al., 1988; Trippel et al., 1993;
O’Keefe et al., 1994] and FGF-9 [Weksler et al.,
1999] in vitro.

Although our culture system is subject to
many of the drawbacks of other in vitro culture
systems, we believe it is superior because it
employs primary cells in a serum-free media. It
should be noted that in our system, serum, IGF,
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Fig. 3. The expression of FGFs 2, 4, 8, and 9 in the epiphyseal growth plate (EGP). Total RNA was isolated
from the EGP and subjected to RT-PCR. Negative controls were not reverse transcribed prior to PCR. Total
RNA isolated from chick embryos (Emb) was used as a positive control.

TGF-B, or FGFs alone have little or no mitogenic
effect on proliferative chondrocytes. The FGFs
are permissive mitogens since they significantly
stimulate proliferation only in the presence of
IGF-1 and TGF-B, or serum [Rosselot et al.,
1994]. While this study utilized our serum-free
culture system, preliminary data indicates that
all of the responses seen above are the same if
the FGFs are assayed in 5% serum (data not
shown).

In our assays, FGF-1 had little effect on
chondrocyte proliferation, and it is questionable
if stimulation by FGF-1 at 6.1 nM is physiolo-
gically relevant. In agreement with our obser-
vations is Weksler et al. [1999] who observed
that FGF-1 (0.61 nM) had no effect on the
proliferation of a rat chondrogenic cell line.
These observations are surprising in light of
the work of Ornitz et al. [1996], who assayed the
ability of FGFs to stimulate individual FGFRs
and their splice variants in vitro. Their system

Cekl Cek2

A P H

A

A P H

utilized BaF3 cells, which lack FGFR expres-
sion. Using this cell line they expressed FGFRs
one at a time and tested the effects of FGFs 1-9.
They found that FGF-1 was a universal ligand
in the sense that it was capable of maximally
stimulating all FGFR splice variants.

We have detected the expression of avian FGF
receptors Cek1, Cek2, Cek3, and FREK in proli-
ferative chondrocytes. Our observations gener-
ally agree with other studies that have shown a
broad distribution of the mammalian FGF
receptors FGFR1, FGFR2, and FGFR3 in the
growth plate [Peters et al., 1993; Gonzalez et al.,
1996; Delezoide et al., 1998; Hamada et al.,
1999]. The fact that we observed several FGF's
capable of stimulating proliferation while FGF-
1 is ineffective implies that when multiple FGF
receptor types are present, the interactions
between ligand and receptors may produce
results not predicted by assay systems that lack
such complexity.

Cek3 FREK

A P H A P H

8 BER v~

Fig. 4. The expression of Cek1, Cek2, Cek3, and FREK in articular, proliferative, and hypertrophic
chondrocytes. Total RNA was isolated from articular (A), proliferative (P), and hypertrophic (H)
chondrocytes and analyzed for the presence of the chicken FGF receptors Cek1, Cek2, Cek3, and FREK

by Northern blotting.
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Studies examining the role of FGF signaling
in vivo are divided as to the effect of FGF's on
proliferation. Over-expression of FGF-2 and
constitutive activation of FGFR3 are reported
to stimulate chondrocyte proliferation [Coffin
et al., 1995; Iwata et al., 2000]. Many other in
vivo studies conclude that FGF signaling inhi-
bits chondrocyte proliferation. Knockout of
FGFR3 stimulates chondrocyte proliferation
[Deng et al.,, 1996] while over-expression of
FGF-9 [Garofalo et al., 1999], or in some cases
constitutive activation of FGFR3, inhibits chon-
drocyte proliferation [Segev et al., 2000]. How-
ever, an in vivo study examining the FGFR3
mutation that causes TD demonstrated no
difference in the proliferative response of wild
type and TD chondrocytes when stimulated by
FGF-2 or FGF-9 [Legeai-Mallet et al., 1998].

These conflicting observations on the effect of
FGF on chondrocyte proliferation can perhaps
be explained by the work of Liu et al. [1998], who
demonstrated that FGF-2 could have either
stimulatory or inhibitory effects on the prolif-
eration of cells depending on the activation state
of the mitogen-activated protein (MAP) kinase
pathway. They observed that FGF-2 signaling
inhibited proliferation when MAP kinase was
chronically stimulated, while FGF-2 enhanced
proliferation when MAP kinase was transiently
stimulated. Lending some additional support to
this idea is the work of Henderson et al. [2000],
who found that FGF-1 could stimulate the
proliferation of a chondrocytic cell line while a
constitutively activating FGFR3 mutation inhi-
bited the proliferation of the same cell line.
Constitutively activating mutations of FGFR3
or over-expression of FGFs could cause an
inhibition of chondrocyte proliferation, while
under normal conditions chondrocyte prolifera-
tion is stimulated by FGF.

Naski et al. [1998] have suggested that FGF
signaling is also responsible for inhibiting the
transition from resting to proliferation. This
theory is supported by the work of Chen et al.
[1999], who examined the growth plates of mice
expressing an FGFR3 ACH mutation and noted
both a reduced zone of proliferation and an
enlarged resting zone. These effects may be
confounding the interpretation of the role that
FGF's have on chondrocyte proliferation.

This study is the first examination of FGF's 4,
8, and 9 expression in the postembryonic EGP
and illustrates the complexity of the FGF
signaling system. We have previously observed

FGF-2 in the EGP by immunohistochemistry,
Western blotting, and PCR [Twal et al., 1994;
Luan et al., 1996], and FGF's 4, 8, and 9 have all
been detected during embryonic limb develop-
ment or during embryonic intramembranous
bone growth [Crossley et al., 1996; Kim et al.,
1998]. While proliferative chondrocytes express
the FGF receptors Cekl, Cek2, Cek3, and
FREK, and can be stimulated to proliferate by
FGFs 2, 4, 8, and 9, RT-PCR shows that only
FGF-2 and FGF-4 are expressed in the avian
growth plate. Therefore, we believe FGF-2 and
FGF-4 merit further study to determine if either
or both are the key FGF ligand for endochondral
bone growth.
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